Siemens Creates Living Lab in Princeton, NJ to Demonstrate Microgrids

Sept. 4, 2020
Siemens, one of the largest companies in the microgrid arena, has created a living lab at its US technology headquarters in Princeton, N.J. to demonstrate how similar facilities can use microgrids.

Siemens, one of the largest companies in the microgrid arena, has created a living lab at its US technology headquarters in Princeton, N.J. to demonstrate how similar facilities can use microgrids.

The microgrid includes solar photovoltaics, battery storage, electrical power infrastructure, building management systems and microgrid control systems. Researchers will study each component of the microgrid and how the system works as a whole to provide a blueprint for universities, office parks, industrial sites and similar facilities.

The living lab also will demonstrate the ability of microgrids to help with sustainability goals. The headquarters facility is expected to reduce its carbon footprint by 50% because of the microgrid.

“Microgrids continue to become an integral part of our modern-day energy systems because they not only provide an answer to threats like extreme weather and power outages, but will also play a significant role in helping cities and communities meet their challenging CO2 reduction targets,” said Dave Hopping, president and CEO, Siemens Smart Infrastructure North America.

Hopping added that Siemens wants to “demystify the difficulties around installing and operating a microgrid to provide a clear path towards clean energy and carbon neutrality.”

Siemens researchers will investigate and demonstrate grid management and algorithms to reduce energy use and expand the system’s flexibility and carbon efficiency. The team also will test how the technology behaves in various scenarios, including when it is islanded from the grid.

The research lab will use a range of Siemens products among them its advanced microgri controls and its switchgear and transfer switches by Russelectric, a Siemens Business.

The microgrid will connect to the Siemens MindSphere cloud-based platform with data analytics and system monitoring technologies with support provided by its MindSphere team in Austin, Texas. The system includes dashboards that provide building occupants and engineers with real-time data on how the grid is operating and performing

“The beauty of our R&D work in Princeton is that we have the power to investigate and validate highly innovative technologies continuously in a real environment, resulting in a clear blueprint for a more efficient and flexible microgrid system that can be replicated all over the world,” said Xiaofan Wu, Princeton Island Grid project manager, Siemens Corporate Technology.

Siemens is involved in some of the highest visibility microgrid projects in the US, among them Blue Lake Rancheria in Humboldt County, California and the Commonwealth Edison Bronzeville microgrid in Chicago.

Learn about microgrids for colleges and universities in the Microgrid Knowledge whitepaper, “The Genius of Microgrids in Higher Education,” available in a free download courtesy of Siemens.

About the Author

Elisa Wood | Editor-in-Chief

Elisa Wood is the editor and founder of EnergyChangemakers.com. She is co-founder and former editor of Microgrid Knowledge.

gettyimages1341067688_sdl__1320x755

Revolutionizing Defense: The Crucial Role of Microgrids and Schneider Electric in Department of Defense Energy Resiliency

Sept. 13, 2024
Last month, the North American Electric Reliability Corporation (NERC) said that U.S. power grids are becoming more susceptible to cyberattacks every day, with vulnerable attack...

Download the full report.

Microgrid Implementation Challenges and Key Technologies

Schneider Electric identifies the main challenges faced during a microgrid project implementation and provides practical information for addressing them.