Siemens Creates Living Lab in Princeton, NJ to Demonstrate Microgrids

Sept. 4, 2020
Siemens, one of the largest companies in the microgrid arena, has created a living lab at its US technology headquarters in Princeton, N.J. to demonstrate how similar facilities can use microgrids.

Siemens, one of the largest companies in the microgrid arena, has created a living lab at its US technology headquarters in Princeton, N.J. to demonstrate how similar facilities can use microgrids.

The microgrid includes solar photovoltaics, battery storage, electrical power infrastructure, building management systems and microgrid control systems. Researchers will study each component of the microgrid and how the system works as a whole to provide a blueprint for universities, office parks, industrial sites and similar facilities.

The living lab also will demonstrate the ability of microgrids to help with sustainability goals. The headquarters facility is expected to reduce its carbon footprint by 50% because of the microgrid.

“Microgrids continue to become an integral part of our modern-day energy systems because they not only provide an answer to threats like extreme weather and power outages, but will also play a significant role in helping cities and communities meet their challenging CO2 reduction targets,” said Dave Hopping, president and CEO, Siemens Smart Infrastructure North America.

Hopping added that Siemens wants to “demystify the difficulties around installing and operating a microgrid to provide a clear path towards clean energy and carbon neutrality.”

Siemens researchers will investigate and demonstrate grid management and algorithms to reduce energy use and expand the system’s flexibility and carbon efficiency. The team also will test how the technology behaves in various scenarios, including when it is islanded from the grid.

The research lab will use a range of Siemens products among them its advanced microgri controls and its switchgear and transfer switches by Russelectric, a Siemens Business.

The microgrid will connect to the Siemens MindSphere cloud-based platform with data analytics and system monitoring technologies with support provided by its MindSphere team in Austin, Texas. The system includes dashboards that provide building occupants and engineers with real-time data on how the grid is operating and performing

“The beauty of our R&D work in Princeton is that we have the power to investigate and validate highly innovative technologies continuously in a real environment, resulting in a clear blueprint for a more efficient and flexible microgrid system that can be replicated all over the world,” said Xiaofan Wu, Princeton Island Grid project manager, Siemens Corporate Technology.

Siemens is involved in some of the highest visibility microgrid projects in the US, among them Blue Lake Rancheria in Humboldt County, California and the Commonwealth Edison Bronzeville microgrid in Chicago.

Learn about microgrids for colleges and universities in the Microgrid Knowledge whitepaper, “The Genius of Microgrids in Higher Education,” available in a free download courtesy of Siemens.

About the Author

Elisa Wood | Editor-in-Chief

Elisa Wood is an award-winning writer and editor who specializes in the energy industry. She is chief editor and co-founder of Microgrid Knowledge and serves as co-host of the publication’s popular conference series. She also co-founded, where she continues to lead a team of energy writers who produce content for energy companies and advocacy organizations.

She has been writing about energy for more than two decades and is published widely. Her work can be found in prominent energy business journals as well as mainstream publications. She has been quoted by NPR, the Wall Street Journal and other notable media outlets.

“For an especially readable voice in the industry, the most consistent interpreter across these years has been the energy journalist Elisa Wood, whose Microgrid Knowledge (and conference) has aggregated more stories better than any other feed of its time,” wrote Malcolm McCullough, in the book, Downtime on the Microgrid, published by MIT Press in 2020.

Twitter: @ElisaWood

LinkedIn: Elisa Wood

Facebook:  Microgrids

ICT Visionary Q&A with Allen Griser, Chief Commercial Officer at Clearfield

Dec. 1, 2023
ICT Visionary Q&A with Allen Griser, Chief Commercial Officer, Clearfield


6 Reasons Why Natural Gas is a Distributed Energy Source Bridging Solution

Many experts predict a windfall for the renewable energy industry as companies strive to meet their stated goals by 2035, 2040, or even 2050. But a new white paper from Mesa Solutions...