Maxwell Technologies’ Jessica Baris explores the ins and outs of the innovative ultracapacitors on UC San Diego’s microgrid and how the energy storage system works.
For a smattering of days this year, Mike Wilk’s office space was a grove of eucalyptus trees on UC San Diego’s coastal campus.
Wilk, a senior systems engineer at Maxwell Technologies, is part of the team that installed the first ultracapacitor energy storage system on UC San Diego’s microgrid. Maxwell’s system, an inconspicuous 20-foot container filled with ultracapacitor modules, supports the solar panels that capture and feed energy to the adjacent La Jolla Playhouse Theater.
Batteries traditionally play the energy storage role. The goal of the Maxwell ultracapacitor bank installation was to see if ultracapacitors can provide a more cost-effective energy storage system for microgrids—and better response time—than batteries.
“The more renewables you put on the grid, the more unstable the grid gets,” Wilk said. “Every time a cloud comes by, there are dips in the solar power. Maxwell’s system monitors these changes, and our ultracapacitors react to the dips in power output. Ultracapacitors achieve solar smoothing, which means they smooth out the peaks and valleys of the power output by being the energy source that fills in the gaps.”
During cloud cover, there is a sharp decrease in power, and this is when the ultracapacitor modules are discharged, adding power to the microgrid. When the solar power is increasing, the ultracapacitors are charged.
“When those two outputs work together, you end up with a much smoother, higher quality power output,” Wilk said.
Shaw Lynds, manager, systems technology at Maxwell Technologies, completed the simulation model for the ultracapacitor bank and worked closely with the team at UC San Diego to bring the project to fruition. Lynds said Maxwell’s ultracapacitor bank has been fully operational since April 2016 and has proven to be a strong contender for the role of solar smoothing in the microgrid.