Striving Toward 100% Renewable Microgrids: NREL

June 19, 2015
NREL is studying how much renewable energy can be integrated into a microgrid, says Pless. That’s an important topic because a number of utilities, especially on islands like Hawaii, have available to them more renewable energy than they can integrate.

If you’re interested in following the latest research into microgrids — especially 100 percent renewable microgrids — keep an eye on the National Renewable Energy Laboratory in Golden, Col., which has a research microgrid.

Among the microgrids under study are microgrids on islands, microgrids on military bases, and microgrids that are part of a utility grid, says Shanti Pless, senior research engineer for NREL.

NREL’s research microgrid, part of its Energy Systems Integration Facility, is a microgrid with PV simulators and grid simulators, he says. Research partners can plug in and test new energy technologies on real and simulated power systems before they connect them to the grid.

This allows NREL and its partners to simulate and test what will happen when certain components — solar inverters, for example — are hooked up to the grid.

Partners, such as utilities, can connect equipment and then begin testing in a few days.

NREL is studying how much renewable energy can be integrated into a microgrid, says Pless. That’s an important topic because a number of utilities, especially on islands like Hawaii, have available to them more renewable energy than they can integrate.

NREL is demonstrating that, in places like Hawaii, it is indeed possible to have microgrids with higher-than-previously-allowed levels of renewable energy, says Pless.

Hawaii has a new law (SB 5445) requiring 100 percent renewables by 2045.

“Renewable microgrids are possible with the right amount of storage and management of generation and loads in a grid. We’re demonstrating that can be done,” he says.

Using smart inverters is key to integrating more renewables, Pless says.

The lab conducted “inverter load rejection over-voltage” (LRO) tests, along with SolarCity, examining ways to quantify over-voltage events — a major barrier to bringing more distributed energy onto the grid.

LRO events take place when a local feeder or breaker opens and the power output from a distributed energy resource exceeds the local load. The NREL testing helped address challenges created by PV inverters, says NREL.

The NREL Tests were designed to determine the length and magnitude of transient over-voltage events created by several commercial PV inverters during load-rejection conditions.

As a result of this work, HECO filed with the Hawaii Public Utilities Commission a plan to boost its penetration limits for rooftop solar — from 120 percent of minimum daytime load to 250 percent of minimum daytime load.

“If those increases are implemented, they will represent the highest threshold for solar penetration on distribution circuits in United States,” says NREL.

A whole new set of inverters, called smart inverters, can protect against over-voltage problems. “Smart inverters  can enable more PV systems to be integrated onto the grid,” Pless says.

“The industry is striving for 100 percent renewable microgrids at the island scale,” says Pless. “The hardware and technology is coming along. It’s about integrating it and creating multiple value streams.”

Read more about 100% renewable microgrids by subscribing to the Microgrid Knowledge newsletter. It’s free.

About the Author

Lisa Cohn | Contributing Editor

I focus on the West Coast and Midwest. Email me at [email protected]

I’ve been writing about energy for more than 20 years, and my stories have appeared in EnergyBiz, SNL Financial, Mother Earth News, Natural Home Magazine, Horizon Air Magazine, Oregon Business, Open Spaces, the Portland Tribune, The Oregonian, Renewable Energy World, Windpower Monthly and other publications. I’m also a former stringer for the Platts/McGraw-Hill energy publications. I began my career covering energy and environment for The Cape Cod Times, where Elisa Wood also was a reporter. I’ve received numerous writing awards from national, regional and local organizations, including Pacific Northwest Writers Association, Willamette Writers, Associated Oregon Industries, and the Voice of Youth Advocates. I first became interested in energy as a student at Wesleyan University, Middletown, Connecticut, where I helped design and build a solar house.

Twitter: @LisaECohn

Linkedin: LisaEllenCohn

Facebook: Energy Efficiency Markets

Propane Is a Sustainable Choice for Growing Microgrid Need

July 2, 2024
Construction professionals rely on propane’s lower emissions and enhanced resiliency

Mgk Erock Sr Cover 2023 02 06 16 26 29

7 Strategies to Make Microgrids a Fit for Utility Grid Modernization

In 2022, Enchanted Rock and Microgrid Knowledge conducted a survey of leaders at large U.S. electric utilities. The goal was to understand their actions and attitudes around microgrid...